High-p_T Identified v₂ measurement in Au+Au collisions at 200 GeV

Masahiro Konno (Univ. of Tsukuba)

Physics motivation:

- Hadron production at intermediate p_T
- Elliptic Flow

Technical aspects (with results):

- How to determine Reaction Plane
- How to identify particles (PID)
 - + TOF
 - + Aerogel, MRPC-TOF
 - + pi0, photon

Summary

Hadron production at intermediate p_T: Baryons vs. Mesons

- Inclusive charged hadrons suppressed by a factor of $4\sim5$ at $p_T>5$ GeV/c.
- Particle-type dependent nuclear modification at intermediate p_T.

Large Baryon/Meson Ratios

- Central Au+Au: $p/\pi \sim 0.8$ (at $p_T = 2-4$ GeV/c) at variance with perturbative production mechanisms (favour lightest mesons).
- -Peripheral Au+Au: p/π ~ 0.2 as found in p+p & e+e- jet fragmentation.

- For p_T>2 GeV, protons are as abundant as pions!
- Particle composition inconsistent with known fragmentation functions.
- Additional production mechanism for baryons in the intermediate p_T range.

Hadron/Meson Ratio

Au+Au (central): hadron/meson ~ 2.5 at p_T = 1 - 4 GeV/c (inconsistent w/known fragmentation functions).

Baryon enhancement limited to $p_T < 5$ GeV/c (h[±]/ $\pi \sim 1.6$ in p+p collisions): h^{\pm} , π^0 equally suppressed.

Elliptic Flow: Baryons vs. Mesons

Elliptic Flow

$$\frac{dN}{d\phi} \propto 1 + 2v_2 \cos 2(\phi - \Phi_{\rm RP})$$

v₂: 2nd Fourier coefficient of dN/dφ

φ : Azimuthal angle (w.r.t reaction plane)

- Easily measure anisotropy for identified particles.
- Should determine reaction plane experimentally.
- Suffer resolution of reaction plane (smearing).

A sensitive probe in the early stage of relativistic heavy ion collisions:

- Pressure gradient build up elliptic flow.
- Initial anisotropy in x-space in non-central collisions translates into final anisotropy in p-space.

v₂ of baryons and mesons

- At low pt, hydro works well.
- Mass dependence of v₂
 consistent w/ hydrodynamics.

$$v_2^{meson} > v_2^{baryon}$$
 at low $p_T^{v_2^{meson}} \approx v_2^{baryon}$ at $p_T^{\infty} = 2 \text{ GeV/c}$
 $v_2^{meson} < v_2^{baryon}$ at higher p_T^{∞}

PHENIX: Phys. Rev. Lett. 91 182301 (2003)

- Different v₂ saturation values for mesons and baryons.
- Enhanced baryonic elliptic flow observed.

Quark Number Scaling

200 GeV Au+Au (Minimum Bias)

 π , K, p (PHENIX) :

Phys. Rev. Lett. 91 182301 (2003)

 K_{S}^{0} , Λ (STAR):

Phys. Rev. Lett. 92 052302 (2004)

 π^{0} (PHENIX) : nucl-ex/0404014

Deuteron: PHENIX PRELIMINARY

- Quark number scaling works.
- Expected from recombination.
- $-v_2^s \sim v_2^{u,d} \sim 7\%$
- Indicate partonic collectivity.

Technical aspects (with results):

- How to determine Reaction Plane
- How to identify particles (PID)
 - + TOF
 - + Aerogel, MRPC-TOF
 - + π^0 , γ

How to measure Event Anisotropy experimentally (in case of PHENIX)

Reaction Plane Detectors: BBC,SMD,MVD

Beam-Beam Counter (BBC)

 $|h|=3\sim4$

64pmts in each BBC Detect charged particles

Shower-Max Detector (SMD)

Inside ZDC

Detect spectator-neutron energy Measure beam position

Multiplicity Vertex Detector (MVD)

Silicon pad detector at endcaps

|h|=3~4

Consists of 64 pmts in each Detect charged particles MIP calibration for each pmt Ring gain correction Removing 4 special pmts

RP Determination

$$Q_{x} = \sum_{i}^{N} w_{i} \cos(n\phi_{i})$$

$$Q_{y} = \sum_{i}^{N} w_{i} \sin(n\phi_{i})$$

$$Q_{w} = \sum_{i}^{N} w_{i}$$

$$Q_{x}' = \frac{Q_{x} - \langle Q_{x} \rangle}{\sigma_{x}}$$

$$Q_{y}' = \frac{Q_{y} - \langle Q_{y} \rangle}{\sigma_{y}}$$

$$\Psi_{obs} = \tan^{-1} \left(\frac{Q_{y}'}{Q_{x}'}\right)$$

- 1. Average sin/cos shift correction
- 2. Normalized sum x/y distribution correction
- 3. Conventional flattering (shifting angle) correction

$$\Psi = \Psi_{obs} + \Delta \Psi$$

$$\Delta \Psi = \sum_{k} (A_k \cos(2k\Psi_{obs}))$$

$$+ B_k \sin(2k\Psi_{obs}))$$

$$A_k = -\frac{2}{k} \langle \sin(2k\Psi_{obs}) \rangle$$

$$B_k = \frac{2}{k} \langle \cos(2k\Psi_{obs}) \rangle$$

MVD (Run4)

Endcap: Silicon Pad detector (144 azimuthal and 21 radial segments)

- Measurement of v_2 at MVD (1.2 < $|\eta|$ < 3).
- Consistent with the previous results at PHOBOS/STAR.

SMD 1st harm RP compared with BBC

The vertical is subtracted by pi to see the correlation easily.

The Berkeley School, May/26/2005

MVD 2nd harm RP compared with BBC

V₂ VS. p_T (charged particle)

- v₂ (reaction plane) does have less non-flow because of the h gap.
- Non-flow components are removed in v₂ (2-particle correlation) and v₂ (2nd cumulant).

How to identify particles (PID)

Time-of-Flight

PHENIX: PRC 69 034909 (2004)

- Identify charged particles:

 π (3 GeV/c)

K (2 GeV/c)

p (4 GeV/c)

- Many Physics Results

22

M.Konno (Univ. of Tsukuba)

The Berkeley School, May/26/2005

Extension method (TOF)

(1) The width as a function of p is parameterized:

$$\sigma_{m^2}^2(p) = \frac{\sigma_{\alpha}^2}{K^2} (4m^4p^2) + \frac{\sigma_{ms}^2}{K^2} \left[4m^4 \left(1 + \frac{m^2}{p^2} \right) \right] + \frac{\sigma_{TOF}^2 c^2}{L^2} [4p^2(m^2 + p^2)]$$

- (2) Multiple gaussian function fitting (free parameters: 3 heights).
- (3) Particle yield obtained for π , K, p.

PHENIX High-p_T PID Upgrade

Aerogel & MRPC-TOF

- Enhancement of Charged Hadron PID Capability.
- Together with the Aerogel, TOF and RICH, we can extend the PID beyond $p_T = 5$ GeV/c.

AEROGEL:

Installation (Run4-, Full Run5)

PID Plot with Aerogel

With(without) requiring Cherenkov light associated to the track

- We can see pion enhancement (rejection).
- It is functional to study intermediate p_T range.

MRPC-TOF

(Multi-gap Resistive Plate Chamber Prototype installed in Run5)

Pion p_T spectra & R_{CP} (Aerogel)

- These are working results.
- Consistent with the previous results.
- PID p_T range extended.

Proton p_T spectra (Aerogel)

- These are working results.
- Consistent with the previous results.
- PID p_T range to be extended.

Pion/Proton v₂ (Aerogel)

 π^0 , γ - v_2 that can reach high p_T

π⁰, γ - p_T spectra

NLO QCD calculation describes all the spectra very well (from central to peripheral).

- Photon R_{AA} is consistent with unity over all the centrality compared to π^0 results.
- Direct photon production in Au+Au unmodified by QCD medium.

- The difference of v2 and the g/p^0 ratio will give us a measure of direct $g v_2$.

Summary

- Enhanced baryon yields & v₂ (compared to meson) is consistent with quark recombination mechanisms
- Need measurements of reliable PIDed v_2 at higher p_T to understand the origin of v_2 , and hadron production mechanism (baryon-meson difference):
 - + High-p_T Proton
 - + High-p_T π^0
 - (+ Direct photon)